If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=150-4.9t^2
We move all terms to the left:
0-(150-4.9t^2)=0
We add all the numbers together, and all the variables
-(150-4.9t^2)=0
We get rid of parentheses
4.9t^2-150=0
a = 4.9; b = 0; c = -150;
Δ = b2-4ac
Δ = 02-4·4.9·(-150)
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{15}}{2*4.9}=\frac{0-14\sqrt{15}}{9.8} =-\frac{14\sqrt{15}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{15}}{2*4.9}=\frac{0+14\sqrt{15}}{9.8} =\frac{14\sqrt{15}}{9.8} $
| 0=-20t^2+27t | | x/7=11-9 | | 5+6y=3y+20 | | 30*20=16y*y | | 9x−6=4x+194x+19 | | −4x+18−9x=6−7x | | .5m+89=144 | | q+(-6)=-6 | | 30=5x+2 | | 5x+9=−3x+7 | | -5(-2y+3)=3y+2(3y-5) | | -8+g=4 | | -4x+5=4x-4 | | 52w-6=154 | | p-(-3)=2 | | 11=12z-5z | | 6p*9-(-3)=198 | | 4x-8(11-x)=2(x+6) | | 4n=6+8 | | 9=6s+8 | | 0.03x=1000 | | 5x+8=-4x-2 | | 4(m-4)=44 | | 4(y+8)-8y=36 | | 7z=18.75+4 | | 6n-12=5 | | 15.5+z=9.25+9.5 | | 12/p-4=2 | | 4k+11=k | | y/3=15/ | | 4x+27=10x-3x | | b=4(43)+38 |